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Summary. Recentexperimental studies on the nonlinear evolution of three-dimensional

wavetrains have shown the development of a mean ow distortion that does not de cay

despite the de cayof the fundamental disturbances after the se cond br anchof the instabil-

ity loop. This mean ow distortion has a spanwise structure consisting of positive and

negative regions distributed like longitudinal streaks,which becomemore complex as the

nonlinearity develops. In or derto gain a better insight into the ow physics of this pr ob-

lem numerical simulations ar e also being carried out. The numerical model is base don

the Parab olize d StabilityEquations (PSE) and takes into account both nonlinear and non-

par allele�ects. The numerical computations show that the nonlinear evolution of thr ee-

dimensional Tollmien-Schlichting waves results in the development of a mean ow distor-

tion containing longitudinal vortices that decay very slowly after the de cayof the initial

disturbances. The strongest vortices have a spanwise wavenumber two times the wavenum-

ber of the fundamental T ollmien-Schlichting waves.The resulting structure resembles the

structure observed experimentally and the splitting of longitudinal streaks observed at lat-

ter stages is captured by the computation. The numerical results pr ovideadditional data

on which to build a the or etic almodel of the mechanisms involved.

Keyword: Boundary layer instability, Laminar-turbulent transition, Wavetrains, Parab-

olized stability equations, T ollmien-Schlichting waves.

1. INTRODUCTION

The natural transition from laminar to turbulent ow in shear lay ers observed in

aeronautical applications usually takes place in an environment containing random noise.



The transition process leading to turbulence in such applications may, therefore, be very

distinct from the well established model that consists in the ampli�cation of plane regular

disturbances seeded by low amplitude oblique modes that interact nonlinearly and lead

to secondary instability processes. Some studies show that indeed this is the case.

In an e�ort to try to understand the mechanisms involved in natural transition,

recent investigations have been conducted (Gaster, 1978; Shaikh, 1997; Medeiros and

Gaster, 1999a; Medeiros and Gaster, 1999b; Medeiros, 1998a; Medeiros, 1998b; Medeiros,

1997a; Medeiros, 1997b). These investigations focus on the nonlinear evolution of three-

dimensional disturbances generated by a point source. This type of disturbances generate

a continuous range of oblique modes, representing a more generic situation, closer to the

three-dimensional conditions observed in actual engineering applications.

The results from these investigations have shown that the nonlinear evolution of

three-dimensional wavetrains is not entirely consistent with the classic nonlinear theory

developed for plane wavetrains. The �rst signature of nonlinearity is the formation of lon-

gitudinal streaks at relatively low wave amplitudes. Despite the decay of the fundamental

disturbances after the waves have crossed the upper branch of the stability diagram, the

longitudinal streaks do not decay and develop a more complex structure.

The current investigation presents numerical results aimed at understanding the na-

ture of the longitudinal streaks resulting from the evolution of three-dimensional wave-

trains. The numerical model is based on the Parabolized Stability Equations (PSE),

which have been extensively used to simulate the nonlinear evolution of longitudinal vor-

tical structures (Li and Malik, 1995; Mendon�ca et al. , 1998; Mendon�ca et al. , 1999)

similar to the longitudinal streaks observed by Medeiros (1998a; 1998b; 1997a; 1997b).

2. FORMULATION

The Navier-Stokes equations for an incompressible ow of a Newtonian uid are sim-

pli�ed by assuming that the dependent variables are decomposed into a mean component

and a uctuating component as follows:

~u� = ~U� + ~u0�; and p� = P � + p0�; (1)

where ~u� = [u�; v�; w�]T is the velocity vector and p� is the pressure. The superscript `�'
indicates dimensional variables.

The coordinate system used in the present work is based on the streamlines ( �)

and potential lines (��) of the inviscid ow over a at plate. The equations are nondi-

mensionalized using ��0 and U�

1
as the length and velocity scaling parameters, where

��0 = (����0=U
�

1
)
1=2

is the boundary layer thickness parameter, U�

1
is the free stream

velocity, ��0 is a reference length taken as the streamwise location where initial condi-

tions are applied, and �� is the kinematic viscosity. The Reynolds number is de�ned as:

Re = U�

1
��0=�

�:
The mean ow is governed by Prandtl boundary layer equations for the ow over a

at plate. The resulting governing equations for the perturbations are elliptic and the

perturbations propagate in the ow �eld as wave structures. The governing equations can

be simpli�ed if the wave like nature of the perturbations are represented by their frequency,

wavenumber, and growth rate. The perturbation �0 is assumed to be composed of a

slowly varying shape function and an exponential oscillatory wave term. It is represented



mathematically as a Fourier expansion truncated to a �nite number of modes:

�0 =
NX

n=�N

MX
m=�M

�n;m(�;  )�n;m(�; z; t); (2)

�n;m(�; z; t) = exp

"Z �

�0

an;m(�)d� + im�z � in!t

#
; (3)

an;m(�) = n;m(�) + in�(�): (4)

where �n;m(�;  ) = [un;m; vn;m; wn;m; pn;m]
T
is the complex shape function vector.

This procedure is similar to a normal mode analysis, but, in this case, the shape function

�n;m is a function of both � and  .

The streamwise growth rate n;m, the streamwise wavenumber �, and the spanwise

wavenumber � were nondimensionalized using the boundary layer thickness parameter

��0. The frequency ! was nondimensionalized using the free stream velocity U�

1
and the

boundary layer thickness parameter ��0 .

The perturbation variable �0, as de�ned in Eq. (2), is substituted in the governing

equations which are then simpli�ed by assuming that the shape function, wavelength, and

growth rate vary slowly in the streamwise direction. Second order derivatives and prod-

ucts of �rst order derivatives can, therefore, be neglected. After performing a harmonic

balance in the frequency, a set of coupled nonlinear equations is obtained. These resulting

equations are known as the Parabolized Stability Equations (PSE). For each mode (n;m)

the equation in vector form results:

An;m�n;m +Bn;m

@�n;m

@�
+ Cn;m

@�n;m

@ 
+Dn;m

@2�n;m

@ 2
=

En;m

e

R �
�0

an;m(�)d�
; (5)

where the coe�cient matrices can be found in Mendon�ca (1997).

The resulting equations are parabolic in � and the solution can be marched down-

stream given initial conditions at a starting position �0. The approach is correct as long

as the instabilities are convective and propagate in the direction of the mean ow not

a�ecting the ow �eld upstream.

The boundary conditions for Eq. (5) are given by homogeneous Dirichlet no-slip

conditions at the wall, Neumann boundary conditions for the velocity components in the

far �eld, and homogeneous Dirichlet condition for pressure in the far �eld.

For the parabolic formulation, it is necessary to specify initial conditions at a starting

position �0 downstream of the stagnation point at the leading edge of the curved plate.

The initial conditions are obtained from Orr-Sommerfeld solutions.

2.1 Normalization condition

The splitting of the perturbation �0(�;  ; z; t) in Eq. (2) into two functions, �n;m(�;  )
and �n;m(�;  ; z; t), is ambiguous, since both are functions of the streamwise coordinate

�. It is necessary to de�ne how much variation will be represented by the shape function

�n;m(�;  ), and how much will be represented by the exponential function �n;m(�;  ; z; t).

This de�nition has to guarantee that rapid changes in the streamwise direction are avoided

so that the hypothesis of slowly changing variables is not violated. The objective is to



transfer fast variations of �n;m(�;  ) in the streamwise direction to the streamwise complex

wavenumber an;m(�) = n;m(�)+ in�(�). If this variation is represented by bn;m, for each
step in the streamwise direction it is necessary to iterate on an;m(�) until bn;m is smaller

than a given threshold. At each iteration k, an;m(�) is updated according to:

(an;m)k+1 = (an;m)k + (bn;m)k: (6)

The variation bn;m of the shape function can be monitored in di�erent ways. In the

present implementation the following is used:

bn;m =
1R

1

0 k~un;mk2d 

Z
1

0

 
~u y

n;m �
@~un;m

@�

!
d ; (7)

where ~uyn;m is the complex conjugate of ~un;m. The integral of k~un;mk
2 was used to assure

that the variation is independent from the magnitude of ~un;m.

2.2 Numerical method

The system of parabolic nonlinear coupled equations given by Eq. (5) is solved nu-

merically using �nite di�erences. The partial di�erential equation is discretized implicitly

using a second order backward di�erencing in the streamwise direction, and fourth order

central di�erencing in the normal direction. The resulting coupled algebraic equations

form a block pentadiagonal system which is solved by LU decomposition.

To start the computation a �rst order backward di�erencing is used. The �rst or-

der approximation is used also in a few subsequent steps downstream in order to damp

numerical transients more e�ciently. For the points neighboring the boundaries, second

order central di�erencing in the normal direction was used.

The nonlinear terms are evaluated iteratively at each step in the streamwise direc-

tion. The iterative process is used to enforce both the normalization condition and the

convergence of the nonlinear terms. A Gauss-Siedel iteration with successive overrelax-

ation is used. The nonlinear products are evaluated in the time domain. The dependent

variables in the frequency domain are converted to the time domain by an inverse Fast

Fourier Transform subroutine. The nonlinear products are evaluated and the results are

transformed back to the frequency domain.

The complex wavenumber is updated at each iteration according to Eq. (6), and the

variation in the shape function is monitored through Eq. (7). The iteration is considered

converged when the normalization condition is no larger than a given small threshold. In

the present implementation this threshold is 10�8.

Results from the present numerical implementation of the PSE have been compared to

experimental and numerical results for K-type breakdown, H-type breakdown and for the

nonlinear development of G�ortler Vortices. The code was able to reproduce the nonlinear

development of interacting disturbances with good accuracy.

3. RESULTS AND DISCUSSION

Some results of the experimental investigation on the evolution of disturbances ema-

nating from a point source conducted by Medeiros (1998a; 1998b; 1997a; 1997b) are show

in Fig. 1 and Fig. 2. The initial amplitude of the disturbances is such that they grow and

decay consistent with the linear stability analysis. Measurements along the centerline of



the plate reveal that a mean ow distortion (MFD) evolves and does not decay after the

decay of the Tollmien-Schlichting (TS) modes. Figure 1 shows that this MFD is initially

negative, but switches to positive further downstream. In order to gain more insights on

the evolution of the MFD additional measurements were taken along the spanwise direc-

tion. Those measurements revealed the development of longitudinal streaks composed of

alternating positive and negative MFD. It was observed that, as the disturbances travel

downstream a positive streak appears at the centerline in what seems to be a splitting of

a given negative streak as seen in Fig. 2.
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Figure 1: evolution of three-dimensional

wavetrains along the centerline of a plate.
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Figure 2: Streaks generated by three-

dimensional wavetrains.

The Fourier expansion in the PSE formulation considers a few fundamental modes

and higher harmonics or subharmonics of lower amplitudes. In this way, the development

of an idealized wavetrain generated by a point source has to be modeled by a �nite

number of oblique waves and a planar wave, all with the same initial amplitude. At

�rst, nine oblique modes were tested, but it was not possible to reach convergence in the

computation. Therefore, in order to comply more closely with the PSE Fourier expansion,

the point source was modeled by �ve fundamental waves, namely, a two-dimensional wave

given by mode (1,0), a pair of oblique waves given by modes (1,1) and (1,-1) with the same

frequency of the 2D wave, and a second pair of oblique waves given by modes (1,2) and

(1,-2), with the same frequency of the other two waves, but with a spanwise wavenumber

twice the wave number of the oblique wave (1,1). The rationale behind this model is that

the higher the spanwise wavenumber the more stable is the oblique wave and soon after

the �rst steps in the downstream direction these waves would decay rapidly, contributing

very little to the nonlinear evolution.



The parameters used in the computation are taken from Medeiros (1997a). The free

stream velocity is U0 = 16:7 m/s, the frequency is � = 200 Hz. The initial conditions

are imposed upstream of the lower branch of the stability diagram at x0 = 0:2149 m.

At this position the boundary layer thickness parameter is � = 4:29 � 10�4 m and the

corresponding Reynolds number is Re = 500. The resulting nondimensional frequency

is ! = 2���=U0 = 0:03235 (F = 106!=Re = 64:69). The spanwise wavenumbers are

�1;1 = 0:05 (b1;1 = 10�3�=Re = 0:1), and �1;2 = 0:1 (b1;2 = 10�3�=Re = 0:2). The

disturbance initial amplitude is � = :01% of the free stream velocity.

Note that in the PSE formulation the length scale is the boundary layer thickness pa-

rameter. That di�ers from the displacement thickness (the length scale used by Medeiros)

by a factor of 1.7204.

Figure 3 shows the variation of the amplitude of the streamwise velocity component

along the streamwise direction. The amplitude is measured at a constant nondimensional

distance from the wall  = 1: It shows that the nonlinear evolution does result in the

growth of a MFD which can be decomposed into a true mean ow distortion given by

Fourier mode (0,0) and by a spanwise periodic mean ow distortion given by modes (0,m),

m 6= 0. The (0,m) modes are characteristic of counter rotating longitudinal vortices and

the strongest mode has a spanwise wavelength two times the wavelength of the fundamen-

tal mode (1,1). The simulation indicates that, even after the decay of the fundamental

TS waves the MFD does not decay. This result is in agreement with the experimental

observation, but this particular numerical test case does not show the change in the MFD

from negative to positive.

Another test case was set up motivated by the fast decay of mode (1,2) as seen in Fig.

3. Since the amplitude of mode (1,2) starts to decay much earlier than the amplitude of the

other fundamental modes, it was thought that a simpler model based on the interaction

of mode (1,0), (1,1) and (1,-1) could represent the physics of the nonlinear process just

as well. Figure 4 shows the evolution of the amplitude of di�erent Fourier modes. It

can be observed that the absence of mode (1,2) in the computation does not a�ect the

development of mode (1,0) and (1,1). The growth of mode (0,2) is more regular, while

mode (0,0) is very little a�ected. Mode (0,4) grows more slowly upstream but reaches the

same amplitude at the streamwise position Re = 1250. Again, this test case results in the

the growth of a MFD that does not decay after the decay of the fundamental TS waves.

The curve labeled \(1,2) a" in Fig. 4 indicates the growth of mode (1,2) from the

�rst test case, while the curve labeled \(1,2)" shows the growth of mode (1,2) do to the

nonlinear interaction between mode (1,0) and (1,1) in the second test case. It is interesting

to observe that the development of mode (1,2) in the �rst test case is attracted by the

forcing generated by the interaction of modes (1,0) and (1,1). This attraction by di�erent

nonlinear interaction forcing mechanisms explain the abrupt change in the growth rate

observed in di�erent Fourier modes and, possibly the irregular growth of mode (0,2). In

other words, the development of a given Fourier mode is governed at di�erent stages of

the development by di�erent forcing mechanisms, resulting in di�erent growth rates.

Additional computations revealed that the nonlinear evolution of a single pair of

oblique waves given by modes (1,1) and (1,-1) also results in the development of a MFD.

In this case, the nonlinear evolution will have less forcing mechanisms do to the presence

of less fundamental modes. This is con�rmed by more smooth amplitude curves as seen

in Fig. 5. Certain modes do not develop, like mode (1,2), (0,1), (0,3) and the strongest

longitudinal mode is again mode (0,2). Despite the fact that this model is much simpler

than the experimental point source the result again shows the development of a MFD
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Figure 4: Maximum amplitude of di�erent

Fourier modes. Initial disturbance com-

posed of modes (1,0), (1,1) and (1,-1)

that does not decay after the decay of the fundamental mode (1,1). It indicates that

the fundamental mechanism for the formation of the longitudinal streaks is related to

the development of three-dimensional disturbances, but not necessarily to the nonlinear

interaction of di�erent oblique modes.

All the results obtained so far show the development of a MFD composed of a true

MFD and spanwise periodic longitudinal vortices. These are related to the longitudinal

streaks observed experimentally but did not result in a change in the disturbance from

positive to negative as observed experimentally. Iso-velocity contours for the MFD in the

spanwise plane are presented in Fig. 6. It shows the spanwise distribution of the stream-

wise disturbance velocity. This spanwise structure is preserved at di�erent streamwise

positions, not showing any type of vortex splitting or vortex doubling.
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Figure 6: Mean ow distortion velocity

contours in the spanwise plane. Initial

amplitude of � = :01%

The change of sign in the MFD may be related to the development of vortices higher

harmonics. In order to test this hypothesis the initial amplitude of the fundamental



oblique waves was increased to � = :025 , increasing the nonlinear interaction. Figure 7

shows that the results for the development of the oblique waves with higher initial am-

plitude results in a modi�cation of the spanwise structure downstream do to the stronger

nonlinear interaction. The negative velocity streak seems to split into two. Although it

was not possible to see the formation of a positive streak between the two new streaks,

the resulting shape indicates that the negative streak is being pushed from below.

z

y

Figure 7: Mean ow distortion velocity

contours in the spanwise plane. Initial

amplitude of � = :025%
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Figure 8: Maximum amplitude of di�erent

Fourier modes. ! = 0:0245.

The previous test cases show that the forcing mechanism for the development of the

MFD is the nonlinear interaction of a pair of oblique waves. It would be interesting to

have the forcing mechanism active along a longer distance in the streamwise direction.

To do so, it is necessary to have a pair of waves that travel a longer distance in the

streamwise direction before crossing the upper branch of the neutral curve. The idea is to

have fundamental oblique waves of lower initial amplitudes resulting in weaker nonlinear

interaction but forcing the MFD during a longer streamwise distance.

The ow conditions for the previous test cases were changed by reducing the frequency

such that the disturbances travel a longer distance in the unstable region of the instability

diagram. For the following test cases the frequency was reduced to ! = 0:0245. The

Reynolds number was increased to Re = 700 in order to keep the initial conditions close

to the lower branch of the neutral curve.

Using the above initial conditions a number of test cases were run. Starting with

an initial amplitude of �1;1 = 0:04 a very strong nonlinear interaction was observed that

resulted in computational convergence problems. The evolution of longitudinal vortices

was observed, but do to the nonlinearity strength it was not possible to detect any kind

of vortex doubling or vortex splitting before the computation failed to converge.

In order to comply more closely with the experimental results, where the fundamental

three-dimensional waves grow and decay according to linear theory, the initial amplitude

was reduced to �1;1 = 0:005: Figure 8 show the amplitude evolution of the fundamental

mode (1,1) and modes (0,0), (0,2), and (0,4). It shows that the modes related to the

MFD grow to amplitudes one order of magnitude higher than the fundamental mode.

Figures 9 and 10 show the velocity contours in the spanwise plane at the streamwise

positions given by Re = 1200 and Re = 1377 respectively. It can be observed that the

spanwise structure changes considerably where a positive streak seems to grow from the
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Figure 9: Mean ow distortion velocity

contours in the spanwise plane.

Re = 1200. ! = 0:0245.
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Figure 10: Mean ow distortion velocity

contours in the spanwise plane.

Re = 1377. ! = 0:0245.

wall upwards splitting the negative streak. This result is consistent with the change of

sign of the MFD observed in the experimental results.

The following important conclusions can be drawn from the present results: a) It

seems that the fundamental mechanism for the development and splitting of longitudinal

streaks is related to the growth of oblique waves, but not necessarily to the interaction

of di�erent oblique modes generated by a point source. That allows the used of simple

models to simulate the process. b) The longitudinal streaks have a wavelength twice the

wavelength of the fundamental oblique mode. The splitting of negative streaks seems to

be related to the development of higher harmonics in the nonlinear process and take place

when a positive streak grows from the wall.

4. CONCLUSIONS

Using the Parabolized Stability Equations to model the evolution of wavetrains ob-

served experimentally it was possible verify that a mean ow distortion does evolve and

does not decay after the decay of the fundamental disturbances. The variation of the

spanwise structure along the streamwise direction observed experimentally was also cap-

tured by the numerical results. The results suggest that a positive streak grows from the

wall, splitting a negative streak into two.

If the initial amplitude of the fundamental disturbances is high the nonlinearity is

too strong and breakdown to turbulence takes place before the growth of the mean ow

distortion. On the other hand, if the nonlinearity is too weak the mean ow distortion

does not grow enough to result in vortex splitting or vortex doubling.

The results show that the evolution of the mean ow distortion depends on the evo-

lution of three-dimensional structures, but not necessarelly on structures generated by a

point source with its continuous spectrum of oblique modes. Using a pair of oblique waves

it was possible to capture the basic features of the phenomena observed experimentally.

Additional investigations are underway to �nd the theoretical bases for this nonlinear

behavior.
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